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Abstract. In this paper a method is presented for evaluating 
N 

j f(x)eiwx dx where wN = p- 2r, p integer. 

The idea is to approximate f(x) instead of the whole integrand by aid of poly- 
nomials. The Romberg-Stiefel algorithm has been extended to this case. The new 
method is complementary to the usual Romberg-Stiefel algorithm in the sense that 
it is more advantageous for larger values of a. An expression for the remainder term 
is also included. Results for the real part are exact if f(x) is of at most 7th degree 
and for the imaginary part if f(x) is of at most 8th degree. 

1. Introduction. The conventional methods of numerical integration are generally 
less suitable for the computation of integrals of the form 

9P 00 

f(x) cos xx dx and ff(x) sin xx dx, 

if X is large. Due to the oscillatory character of the integrand, its approximation 
by aid of polynomials requires a large number of points where the integrand must 
be evaluated. 

In the present paper a method is given where instead of the whole integrand 
only the function f(x) is approximated by polynomials. Moreover, the purely 
numerical part of the method is confined to the evaluation of 

N rN 

(1.1) J f(x) cos xx dx and ff(x) sin cxx dx, 

where 

(1.2) wN = p-27r and p an integer. 

The value of p should be chosen so large that the remaining part of the original 
integrals referring to the interval (N, oo ) can be calculated by asymptotic ex- 
pansion of f(x). 

The idea of the method is to extend Stiefel 's method of numerical integration 
[1] to integrals with strongly oscillating integrands. Stiefel's method can be seen 
as an iteration method in which the number of points where the integrand must be 
evaluated, is doubled at each step. As soon as the change in the result is less than a 
certain tolerance, the process is stopped. Hence, one obtains an automatic check 
of the accuracy obtained. 

In order to retain this principle for the evaluation of the integrals (1.1), where 
only f(x) is approximated by polynomials, it is necessary that the points where f(x) 
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must be evaluated have fixed positions with regard to the wave occurring in the 
goniometric function. This leads to the condition (1.2) for the upper integration 
limit N. The maximum number of evaluation points for which in this report formulae 
for the values of the integrals are presented, is 16 per wavelength. It may be, how- 
ever, that f(x) is so smooth or co so large, that this number is unnecessarily large 
for the accuracy required. Therefore, it is preferable if p is not only an integer, but 
if it is some power of 2. This enables one to perform more iteration steps with the 
possibility that the process needs not to be continued until the finest division of the 
interval (16 points per wavelength). 

The method works better for larger values of w and, in this respect, can be seen 
as a useful complement to the normal Stiefel routine. 

In many cases it may be advisable, as with Stiefel's method, to divide before- 
hand the total interval from 0 to N in a few parts over which the integrals are cal- 
culated separately. This gives the advantage that if somewhere in the interval 
f(x) is relatively difficult to approximate by polynomials, which then compels 
to a large number of evaluation points, this same number does not need to be 
retained everywhere in the interval from 0 to N. 

Like in Stiefel's method, it is also possible in the present method to derive from 
two consecutive steps by linear combination a new approximation which is still 
exact for a polynomial of higher degree (deferred approach to the limit, see e.g. 
Fox [2]). However, the coefficients occurring in the linear combination are more 
difficult to calculate in the present method and, moreover, they become dependent 
on the number of the step. In this paper coefficients are given which lead to exact 
results if in the cosine-integral f(x) is of at most 7th degree and in the sine-integral 
of at most 8th degree. 

For the case of the most accurate formulae presented in this report (16 evalua- 
tion points per wavelength), the truncation error has been calculated. 

The oldest method for the numerical calculation of integrals with oscillating 
integrands is probably due to Filon [3]. He approximates the function f(x) in 
parts of the interval by parabola and then calculates the integral with arbitrary 
limits. This method has been extended by Luke [4], who approximates the function 
f(x) in a certain interval by a polynomial of at most 10th degree. This makes his 
method related to the Newton-Cotes integration formulae. The moments 

Mm f e dx 

are calculated by aid of the function 

sin a 

This function as well as its derivatives are in Luke's method available in the 
form of a table which make it less suitable for a computer. Also, there is no indica- 
tion of the accuracy of the numerical result obtained. It has, however, the advantage 
that the points where f(x) must be evaluated are independent of a. This is not so 
in the method presented in this report, since here these points have fixed positions 
with regard to the wavelength. 

Hurwitz and Zweifel [5], [6] suggested the application of Gauss-Jacobi quadra- 
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ture to obtain numerical approximations of Fourier transforms. Recently, however, 
it was shown by Sanger [7], that this method is nothing else than the application 
of the trapezoidal rule to the complete integrand. 

2. Integration Formulae for fl f(x) cos xx dx. Approximation of f(x) by a con- 
stant or a linear function yields zero, since the integration is over an integer number 
of wavelengths. Therefore the first sensible approximation of f(x) is by a parabola, 
which agrees with f(x) in the points x = 0, N/2 and N. This leads to the following 
result for the integral 

A1: 2N{f(O) -2f( ) +f(N)}. 

Assuming now that the number p of wavelengths in not only an integer, but is 
equal to a power of two, i.e. 

(2.1) coN=2 -r, n= 112 

we may write the result also in the form 

(2.2) A1 22n {f(0) - 2f (28-l 7i) + f (2 -)}. 
We can improve this result by doubling the number of points where f(x) has 

to be evaluated. We then approximate by aid of two parabola, one through the 
values of f(x) at x = 0, N/4, N/2 and the other through f(x) at x = N/2, 3N/4 
and N. This yields 

(2.3) A: 2 {X(0) - 2f(2n2 ) + 2f (24 l) - 2f(3.2n2 r) +f (2nr)} 

We can proceed in the same way, obtaining as next approximation 

A3: -{f(O) - 2f(2 -) + 2f(2.2 I) - 2f(3 .2 ?i) 

(2.4) + 2f (4.2n-3) - 2f (52n3 7r) + 2f (6.2n-3 f) 

2f (7n2-3) + f (8.2n-3 )} 

This can be continued until the nth approximation. The jth approximation (j < n) 
can be written as 

j+1-n 2j- 

Aj: 2 E f (2k - 2)28- 
7rW k=1_tX 

- 2f{(2k - 1)2nU~} +f{2k-2n'j}] 

The last (nth) approximation of this series becomes 

(2.6) An: 1 f{ (2k -2)-} -22f{ (2k- -1) } + f {2k }d 
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where p is not necessarily 2"'. In formula (2.6) the function f(x) is approximated 
by different parabola over each wavelength 2ir/co. Hence, the same formula can be 
retained for any integer value of p, which is in agreement with Eq. (1.2). 

The next step would be to approximate f(x) over each half wavelength ir/W by a 
parabola. After evaluation this appears to lead to exactly the same result as the 
previous approximation and formula (2.6) is again obtained. 

Next, the approximation of f(x) by parabola is performed over a quarter of a 
wavelength. This leads to 

A.,r: (3 f {(2k -2) - 2f {(2k -1) i3 + {2kA] 

(2.7) + 8 f k- ) A k- 

-f {(2k - )} +f {(2k - 

Finally, f(x) is approximated over each eighth wavelength by another parabola 
and we have 

2(+ - 16V) E (2k -2) - 2f {(2k -1) 

f{k}] 7r ? ( +3V o)Z [f{(2k-7) a} 

(2.8) + 8 (8V2 _2-a)Zk f {(2k 8hjf}{(28) j 116 -8V~~~4 

16 

+f 2k + - V 3)[f 2k- )} +f@ K2k 7 

7rU~~~~~~1r (I k= 4)k o (k --f{2-8)I 

f 2 {(2k - 3)7} + f {(2k - 

The formulae (2.6), (2.7) and (2.8) have the favourable property that for any 
value of x the contribution of f(x) has the same sign as4f(x) cos x. These same for- 
mulae can also be used for the evaluation of arbitrary Fourier cosine coefficients of 
f(x) in the interval (0, N). 

Finally, it can easily be shown that all formulae given hitherto are not only 
exact when f(x) is a parabola but also if it is a third degree polynomial over each 
wavelength. 

Similar to Stiefel's method, it is now possible to obtain integration formulae 
which are exact for polynomials up to the 5th degree by linear combination of two 
consecutive results in the A,-sequence. Hence, we shall show that coefficients a, and 
a,' can be determined such that 

(2.9) B, = axjA, + a k'Af+ 
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is an approximation for 
N 

j f(x) cos xx dx, 

which is exact if f(x) is a polynomial of at most 5th degree over intervals of 2'-j 
wavelengths.* First, we shall determine aj and aj' such that Bj is exact for 4th 
degree polynomials f(x). Next, the coefficients aj and aj' are uniquely determined 
by the further requirement that 

(2.10) a, + aj = 1, 

expressing that Bj is also exact for 2nd degree polynomials. 
By aid of an argument similar to thatwhich was used to show that the Aj- 

results, derived for 2nd degree polynomials, hold also for 3rd degree polynomials, 
it follows that the Bj-results then are also exact for 5th degree polynomials. 

The exact result for f(x) = x4 is given by 
N 

4 ~4N' 24N 
(2.11) x4 cos xx dx = 

4 
_ . 

The approximate result for this same case as following from Eq. (2.5) is 

(2.12) Aj: W 
{4-2 i = 1, 2 , 

where use has been made of Eq. (2.1) and of the series 
m M 

2 
M 

2m 1m13 1 
(2.13) E k' = m, E k = m2+ m E k = m3 + m2 + -m. 

k=1 k=1 2 2 k=1 3 2 6 

The approximate results for f(x) = X4, following from Eqs. (2.7) and (2.8) are 

(2.14) A.+1 4N3 2+ 6X) 
2 4 i) 

(2.15) A?+2 2 --4 5? + 37r({ + jv)} 

where Eq. (1.2) has been used as well as Eq. (2.11). The coefficients of N/co4 ap- 
pearing in the last two formulae are approximately -23.77 and -23.93, respec- 
tively. 

The equations (2.9) and (2.10) now form two equations for the unknowns a, 
and a,'. For Bj the exact result (2.11) is substituted, while Aj is given by (2.12), 
(2.14) and (2.15). We obtain 

1 + 16 22j22i 
3 + 2 22n 3 7w2 22n X j = 12 2, ** n-1 

1 16(Qr3) 4 4 16(7r-3) 
3 3r(4 r)r(4 r) 

1 16(7r + 2rX/-12) , 4 16(r + 27rV/2-12) 
an1= --+ , na-1 = - - 

3 37r(8 - X - 8) 3 37X(8V/2 - r - 8) 

As mentioned already above, the results obtained in this way are also exact if 

* With the exception that for j = n + 1, f(x) may be a different 5th degree polynomial over 
each quarter wavelength. 
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f(x) is a polynomial of 5th degree. If f(x) is different, the sequence B1 , B2, .B.+, 
gives results of increasing accuracy. 

We can continue this procedure and form a linear combination of Bj and Bj+l 
which we make exact for f(x) being a 6th degree polynomial and which then will be 
exact also for 7th degree polynomials (over intervals of 2'-j wavelengths). This com- 
bination is 

(2.17) Cj = Oj3Bj + fj'Bj+i with fj + fj = 1. 

The exact result for f(x) = x6 is 

(N 6 6N5 120N3 720N (2.18) a x cos xox dxJ ,2 - 4 + 6 

while the approximate results following from Eqs. (2.5), (2.7) and (2.8) are for 
this case 

Aj: @ (6 - 2_2 + 24X) j = 1, 2, ... ., n 

_6N5 '5 307 2N3 /69 315\ 4 N A 2 - 2 + r 4 + 64 16ir/ (a, 

(2.19) A~-1-2: 6N5 -5 +15 + 15_\ 2N 

+ 159 + 45A/2 + 1395 + 1035 4N 
1024 512 128r 128r c6 

The approximate numerical values of the coefficients of N3/c'4 are -118.9 and 
- 119.9 and those of N/I6 are 716.3 and 720.2. 

Besides Eqs. (2.13) the following series have been used 

(2.20) Zk3 = m4+m3 + n2, 1k 5 1 1 + M +3 -om. k1 4 2 4 k=1 5 2 3 3 

Forming now the Bj-approximations from (2.9) and (2.16) we obtain 

3 N 
N~~~23(a 

6N5 120N3 ? 9 4 + 315 22 N 
2 - W 4 +V16 4 W 6 

(2.21) 6N5 120N3 

Bn+1 2 - C4 

+ 39 4 15A/2 4 315 3 45V/2 3 945 2 45V2. 2\ N 
+ 256 7r 128? + 64 + 32 + 16 8 8/ 6 

The coefficients of NIW6 are approximately equal to 723.0 and 721.4. 
The quantities f3j and /j' can now be calculated from Eqs. (2.17), when Cj 

is replaced by the expression (2.18) and Bj by (2.21). The result is 

1 64 22j 1 - (40/7r2) (22i/22n ) 

T5= 15+ 22n 1 - (48/r2) (22i/22n) 
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I= 16 -64 22j 1 -(40/7r2 )(22j/2 2n)2 j =15 572 22n 1- (48/r2)(221/22n) = 1,2, *2 , n-2, 

- 1 16& + 607r - 720) , 16 16Qir + 607r - 720) (2.22) ~ = 15 + 
37572(72 -12) =15 3757r2(72 -12) 

1 32 r- - 42r -127r3/ - 4627r2 + 4&_r2V/2 + 5760 
On = 2 _7r 

_ 
On 15 15 (7 + 2V )7r2(7r +12r - 48) 

16 327r 7r44V2- 42r3 -127r3/2-4627r2 + 4r v2 + 5760 
15 15 (7 + 2-\/2)r 2 r2 + 127r - 48) 

Using these coefficients in Eqs. (2.17), the Cj values become exact if f(x) is a 
polynomial of at most 7th degree, while in other cases the Cj-sequence gives re- 
sults of increasing accuracy. 

3. Integration Formulae for fl f(x) sin wx dx. Approximation of f(x) by a con- 
stant yields zero for the integral, but approximation by a linear function leads to 

1 
- {f(0) -f(N)}. 

If f(x) is approximated by a different linear function over each half of the in- 
terval, the same result appears. For further halving of the interval, this invariance 
of the result continues until f(x) is approximated over each quarter wavelength 
7r/2cw by a different linear function. However, since the results up to this division 
are invariant, it is neither possible to obtain better results by linear combination. 
Therefore, the linear approximation is not very suitable to be used as starting 
point for a scheme comparable to that used for the cosine-integral. 

Since the results for linear functions are also exact for 2nd degree polynomials, 
the following step could be to derive formulae by approximating f(x) by a 3rd 
degree polynomial fitting at the points x = 0, N/3, 2N/3 and N. 

However, this would lead to points of evaluation for f(x), which differ from 
those required in the calculation of the cosine-integral. For this reason, it has been 
preferred to approximate f(x) by a 4th degree polynomial fitting at x = 0, N/4, 
N/2, 3N/4 and N. After some elementary calculations this leads to the first ap- 
proximation 

A,: (,,f() -( f2nc,) 

(3.1) - r2; {f(0) - 2f (2 _) + 2f (3.2u2 - f (2 r)} 

where n has been defined by Eq. (2.1). 
The second approximation, obtained by aid of two different 4th degree poly- 

nomials, one for each half of the total interval is 

{ ~ ~~~ ( ) 27-2n {- (n-(3r (3.2) A2: 1{f(0) ~f(2n~)} - 2) -{2(0) - 2f(2n3) + 2f (3.2 -)7 

- f5.2n3i)+ 2f(7.2n3) f(8.23)} 
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Continuing this procedure, we obtain as jth approximation (j _ n) 

1 { ( 
7r)}1 22j+3-2ns[( r 

-2 f [f {4k - 3)24i - f {(4k - 1)2- }] 

The nth approximation will be 

A. - (1--2 { f(?) - f(N) } 

+ ,Ls, ktf {2k-2 -}- {2k-2 } 

where p is not necessarily equal to 2n1. In this last formula f(x) has been approxi- 
mated by a different 4th degree polynomial over each wavelength 27r/co. 

The next approximation follows by approximating f(x) separately over each 
half wavelength 

7r2+ 27r - 16 
An+1 -f +27 {f(0) -f(N)} 

4(3ir -8) 
+ 4(37r-8) E f {2k-3 }- {(2k-1 } + 2w k2 W 2 4 

(3-5) 
~~8(4 -7~r) 77r 
+ 2 I ~k 1 Air ' A 

-f {(2k-)3 -f {(2k 4) }] 

Finally, the (n + 2)th approximation is 

1 4 2 
An+2 1Pw3 (371 + 67r3 - 560i2 - 230471 + 12288) {f(O) - f(N) } 

+ 4 (257r - 887r2 - 19207r + 6144) [f {(2k-2-) - } 

f{( 2k 2)}] 

8 2 f{(2k 
+ 84 (37r3 - 767,2 - 768ir + 3072) __f 2k- _ 

(3.6) + f {(2k _ ) 7}_f{(2k -3j)}-f{(2k -4)y_}1 

+ 3 (7 _7r + 527,2 + 3367r - 1536) kZ [f {(2k 8 4)} 

{( 8) i f {2k -8-)r j-y {(2k -8 7-?} 

+ 
32 ( -37r3 + 287r2 + 4327r - 1536) f f(2k - 

I 
- 

7r f 2k 5 7r ) f } 2 
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The formulae (3.4), (3.5) and (3.6) have again the favourable property that for 
any value of x the contribution of f(x) has the same sign as f(x) sin Wx. These same 
formulae can also be used to calculate arbitrary Fourier sine coefficients of f(x) 
in the interval (0, N). 

All formulae of the Aj-sequence in this chapter are exact if f(x) is a polynomial 
of at most 4th degree. 

By linear combination of two consecutive results of the Ai-sequence it is possible 
to obtain formulae which are exact for polynomials of 5th degree and, by reasons 
of symmetry, which are then also exact for polynomials of 6th degree (over inter- 
vals of 2'-j wavelengths). The exact result for f (x) = x5 is given by 

N 
5 - N5 N3 N (3.7) Xsinxdx = -- + 20-- 120 

Approximate results are 

N5 +2 25 N 3 
Aj: - +(20- 2i5) 3 X j= 1,2,- @@ nt 

N5 N 3 /8 2 15 3\N 
An+1: --+ 20 - - ( r + -ri3) 

N 5 N 3 N 
An+2 _ - + 20 -3 - 120 -N. 

co co co 5 

The last expression shows that An+2 is already exact for polynomials of at most 
6th degree. 

The coefficients aj and a3' are determined by Eqs. (2.9) and (2.10), substitut- 
ing for Bj the exact value (3.7). Then 

1 +! 64 22j , 4 64 22j 

3i 5 + 2 - i 3 g2 2 j = 12 2, ** n - 12 3 522 fla 3 5r22l 

3 + 2 ( 
(3.8) a~~ 1 4(i 16ir - 192) a1 

4 
4Or + 1 67r 

_ 
192) (3.8) an = + Uu ) dan 

- - 3 ( 4 
3 32 (7r -4) ' 3 3r2(7r -4) 

an+1= 0 a 1+l = 1. 

If f (x) differs from a 6th degree polynomial, the Bj-sequence formed with the 
coefficients (3.8) gives results of increasing accuracy. 

By linear combination of two consecutive results of the Bj-sequence, it is again 
possible to obtain results which are exact for polynomials up to the 8th degree. 
The exact result for f(x) = x7 is given by 

N 7 - N 7 N5 N 3 N 
x sin x = N + 42 - 840 + 5040 N 

Approximate results are 

A _ N7 + _175 427 N5 
Aj: W + ~~~~~~~~~~~2223+1 2 4i+3 3 j 12 n 
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N7 N5 (105 3 595 2 N?3 (1155 5 5677 4\ N 
W 3 V r32 8 J /w5 \ 512 128 / w7 

N 7 N5 oN3( 105 5 1267 4 1575 3?3675 2 N 
A.+2 _ + 42-- 840 2048 512 7 + 64 8 ) 

Besides the series given by Eqs. (2.13) and (2.20), we used also 
In 

16 1 55 4 1 2 
k= = 6 2 12 

(3.9) I 
k6 = M7 + 1M 5 -1M m + 12 m. 

k=1 7 2 6 42 

Establishing the Bj-approximations by aid of the coefficients aj and aj' given in 
(3.8), we find 

Bj: N+ (42 - 
275 3 (840 - 2281\ Ns j = 12 n 

N 7 N 5 0N3? 217 4 11552N 
Bn - + 42 - - 840 r+ (- -2 + 2 T ) 

N7 N5 N3?( 105 5 1267 4? 1575 3 3675 2 N 
B+1: --+ 42 3 - 840 W5 + 2048 7r 512 64 + 8 J 

Linear combination of two consecutive Bj-results in the way of Eqs. (2.17) yields 
exact values for Cj if f(x) is a polynomial up to the 8th degree. We have to take 

1 64 223 1 - (600/617r 2) (22 /2 2) 

15 25ir2 22n 1 - (48/5ir2) (223/22n) 

16 64 223 1 - (600/617r2) (223/2 2n) 
= 15 257r2 22n 1 - (48/572) (22i/22n) ' j = 1,2, 2 

2177r- 184807r2 + 161280 , 6832r - 819847r2 + 161280 
(3.10) O:n-, 

= - 
66157r4 - 63504gr , n-1 6615 r4 - 635047r2 

= (15/2048)r5 ? (181/512)r- (225/64)r3 - 525/8)7r2 + 720 
(15/2048) r5 - (315/512)r4 - (225/64) r3 + (135/8) 7r2 

-(31/32)7r4 + (165/2)7r2 - 720 
(15/2048)>r5 - (315/512) 7r4 - (225/64) r2 + (135/8) 7r2 

For arbitrary f(x) the Cj-sequence gives approximations of increasing accuracy. 

4. Some Remarks. Both for the cosine- and for the sine-integral, the following 
scheme of approximations is obtained 

Al 
A2 B1 
A3 B2 C. 

An+2 Bn+l Cn 
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The results are obtained line after line. A tolerance can be built in in the pro- 
gramme, making that the calculations are stopped as soon as, for instance, three 
consecutive Cj-values differ by an amount smaller than the tolerance. If not yet 
3 Cj-values are available, the tolerance test can be performed on A3, B2, C, or on 
B3, Ci and C2 . In principle, the scheme could be extended both downward and to 
the right, but this would require further derivations of formulae. For large values 
of wo this will, in general, not be necessary. Then the approximation of f(x) by a 
polynomial of 7th or 8th degree over each wavelength 27r/co will be sufficiently 
accurate. The fact that the method works better if co is larger makes that it is in 
some sense complementary to the usual Stiefel procedure. 

If the tolerance is not satisfied, the value C. will, in general, be the best approxi- 
mation. In Section 5 an estimation for the remainder term is given. 

In many cases it may be preferable to divide the whole interval (0, N) in sub- 
intervals. In the first place this has the advantage that if somewhere in the interval 
f(x) is difficult to approximate by polynomials, which leads to many evaluation 
points there, it is not necessary to take the evaluation points in the whole interval 
at such a small distance. In the second place, if p is some arbitrary integer, it can 
be written as a sum of powers of two. For those subintervals which contain a num- 
ber of wavelengths, which is equal to 2 or some higher power of two, the possibility 
exists that the tolerance is satisfied before f(x) has to be evaluated at 16 points per 
wavelength. 

A number of constants appeared in the integration formulae. They are listed 
below together with their numerical values. 

2 = +0.63661 97723 68 
7r 

2 
(3 - = +0.28872 03788 25 

7r 7r 

8 (_ 1 = +0.69579 87870 84 
7r 7r 

2 (6 + V2 _ 16\/2) = +0.13476 16043 57 
7r 7r 

?(1 + 3 v2 - -) = +0.19058 16885 68 
7r 7r 

s (8 2 -2 - V2) = +0.47632 32484 43 
7r 7r 

8 (16 - 8 V2 
- 2) = +0.19729 95495 79 

7r 7r 

1 = +0.10132 11836 42 

1 + 16(7r - 3) = -0.05330 87559 60 
3 + 7r(4 -7r) 

1 +16(7r + 27r V\/2 - 12) = - 0.06348 43674 98 
3+ 37r (S V2 -r -S8) 
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1 16(w ? 60r- 720) _ + 
1 = -0.00494 87207 38 

15 3757r2(7r 2 12) 

1 32 7r4-4 V- 42r3- 12ir3V -4622 + 48r2 ? + 5760 
15 15 (7 + 2 V\2)wr2(7r' + 127r-48) 

= +0.00513 06033 84 

8 
1 _ ii.2 = +0.18943 05308 61 

2 w ? 2w - 16 
~~~~~~~= ?0.01548 08340 90 

1 (34 + 67r' - 5602X- 2304w + 12288) = +0.00361 70296 21 

(25w3- 88w2 _ 1920r + 6144) = +0.25697 58068 09 

82 
4 (3wr - 76w2 - 768r + 3072) = +0.17950 99474 14 

32 
32 (7r + 527r2 + 3367r - 1536) = +0.19582 38888 28 

32 
(37r3 + 287r2 + 4327r - 1536) = +0.49256 12307 32 

2 
_1 +4( ? 16w - 192) + 0.15140 09551 82 
3 37r2(7r - 4) 

2177r4 - 18480wr2 + 161280 --0.00156 14002 30 
6615X4 - 635047r2 

(15/2048)7r' + (181/512)7r4 - (225/64)wx3 + (525/8)r2 + 720 

(15/2048)wr - (315/512)7r4 - (225/64)wr + (135/8)w2 
= +0.15344 61903 63 

The texts of procedures written in ALGOL 60 is available by request to the 
authors. 

5. The Remainder Term. The error in the integration formulae can be investi- 
gated by aid of the theory given by Milne [8, ??30 and 31]. The error over one 
wavelength is defined as 

R(f) f f(x) s wx dx - value given by integration formula, 

where R (f) is a linear operation to be performed on the function f(x) and a = 2wX/W. 
We shall say that the operator R is of degree n when 

R(xn) = 0 if mi< n and RI(x+l) O. 

The operator giving the error of the result CG is of degree 7 in the case of the 
cosine-integral and of degree 8 in the case of the sine-integral. 
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It is shown by Mlilne that for an operator of degree n, one has 

(5.1) R(f) = f frOO ")(s)G(s) ds, 
00 

where G(s) is the result of applying the operator R to the function (x- s)-/n! 
regarded as a function of the variable x. The function (x - s)' is defined by 

(x- s) = (x - s)' if x > s, 

(x - S) = 0 if x < s. 

If G(s), which only depends on the operator R but not on the function f, does 
not change sign, the operator R is definite and then the equation for R (f) becomes 

(5.2) R(f) = f n+) (t)R ftf 
J (n 1 

where t is some value of x in the range of integration. 
The practical difficulty is that (5.2) is much easier to evaluate than (5.1), 

but that on the other hand (5.2) only holds for definite operators R and that for 
showing R to be definite it is necessary to show that G(s) does not change sign. 
This has been shown by the authors [9] for the operator corresponding to Cn in the 
case of the cosine-integral and it can be shown for the sine-integral along similar 
lines. Hence Eq. (5.2) is valid for estimating the error. Thus we have to calculate 
?{x8/8!} for obtaining the error in the formula for the cosine-integral. 

The exact value of 
a ~~~~~~~~~~~~~~~~8 

If(x) cos wx dx withf(x) - and coa = 2ir Jo~~~~~~~~ ~~8! 

is equal to 

30.159127404 

The approximation Cn, calculated by the program, gives for this case 

30.159221885 
9 

Hence, it can be concluded that the remainder term for the approximation Cn 
over one wavelength a is given by 

_9.4481 * 1i- f(8) (). 

If the whole interval of integration, length N, corresponds to p wavelengths, 
the remainder term becomes 

-w1.5 * 10here *-wfie r) 

where t lies somewhere in the interval. 
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Similar derivations hold for the sine-integral with the result that then the re- 
mainder term for the C1,-approximation over a length N becomes 

+ 1. 1 * lo-7 N(9)() 

where t is somewhere in the interval. 
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